Assignment 1

1. Let f be a 2π-periodic function which is integrable over $[-\pi, \pi]$. Show that it is integrable over any finite interval and

$$
\int_{I} f(x) d x=\int_{J} f(x) d x
$$

where I and J are intervals of length 2π.
2. Verify that the Fourier series of every even function is a cosine series and the Fourier series of every odd function is a sine series.
3. Here all functions are defined on $[-\pi, \pi]$. Verify their Fourier expansion and determine their convergence and uniform convergence (if possible).
(a)

$$
x^{2} \sim \frac{\pi^{2}}{3}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos n x
$$

(b)

$$
|x| \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos (2 n-1) x
$$

(c)

$$
f(x)=\left\{\begin{array}{ll}
1, & x \in[0, \pi] \\
-1, & x \in[-\pi, 0]
\end{array} \sim \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) x\right.
$$

(d)

$$
g(x)=\left\{\begin{array}{ll}
x(\pi-x), & x \in[0, \pi) \\
x(\pi+x), & x \in(-\pi, 0)
\end{array} \sim \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}} \sin (2 n-1) x\right.
$$

4. Show that

$$
x^{2} \sim \frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}-4 \pi \sum_{n=1}^{\infty} \frac{\sin n x}{n}
$$

for $x \in[0,2 \pi]$. Compare it with 1 (a).
5. A finite Fourier series is of the form $a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)$. A trigonometric polynomial is of the form $p(\cos x, \sin x)$ where $p(x, y)$ is a polynomial of two variables x, y. Show that a function is a trigonometric polynomial if and only if it is a finite Fourier series.
6. This is an optional problem.
(a) Assume that the Fourier coefficients of a continuous, 2π-periodic function vanish identically. Show that this function must be the zero function. Hint: WLOG assume $f(0)>0$. Use the relation

$$
\int_{-\pi}^{\pi} f(x) p(x) d x=0
$$

where $p(x)$ is a trigonometric polynomial of the form $(\varepsilon+\cos x)^{k}$ for some small ε and large $k>0$.
(b) Use the result in (a) to show that if the Fourier series of a continuous, 2π-periodic function converges uniformly, then it converges uniformly to the function itself.
(c) Apply (b) to Problem 1(a) to show

$$
\frac{\pi^{2}}{12}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}
$$

